水圧

スポンサーリンク

水圧

水圧の式 ・・・ $p_w=\rho hg$

ここで、$p_w$ : 水圧、$\rho$ : 水(流体)の密度、$h$ : 水深、$g$ : 重力加速度 です。

この式を導出してみましょう。

 

一般に、圧力 $p$ は、$圧力=\dfrac{力}{面積}$ の式で求めます。

水中での圧力は水深が同じであれば、全方向同じ大きさ(下図)であることから、鉛直下方について考えます。(方向により圧力が違うと、水中のある点を考えた場合、その点が動いてしまいます)

 

水深 $h$ での水による圧力を考える場合、断面積 $S$ で、高さ $h$ の水の円柱を考えます。
その円柱の重力による重さ $W$ は、水の円柱の質量を $m$ とすると、 $W=mg$ で示されます。

このとき円柱の底面で受ける力 $W$ を、その面積 $S$ で割ったものが、水深 $h$ での水圧 $p_w$ です。
よって、$p_w$ は、

$p_w=\dfrac{W}{S}$

と示されます。
ここで、$W=mg$ ですから、

$p_w=\dfrac{W}{S}$

$~~=\dfrac{mg}{S}$

水の密度を $\rho$ とすると、水の質量 $m$ 、水の体積 $V$ との関係は、$\rho=\dfrac{m}{V}$ です。したがって、 $m=\rho V$ として代入すると、

意外と、密度の理解があやふやな人が多いように思います。
密度がわからないと非常に困ります。
ここでしっかり、復習しておきましょう。

$p_w=\dfrac{mg}{S}$

$~~=\dfrac{\rho Vg}{S}$

ここで、水の柱の体積 $V=S\times h$ であるので、

$p_w=\dfrac{\rho Vg}{S}$

$~~=\dfrac{\rho Shg}{S}$

$p_w=\rho hg$

となり、これが水深 $h$ での水による圧力です。


気を付けてほしいことは、水深 $h$ で感じる圧力 $p$ は、水面が受ける大気圧 $p_0$ を足す必要があることです。

したがって、

$p=p_0+p_w$

$~~=p_0+\rho hg$

として示されます。

水圧はだいたい $10\:m$ もぐると、1気圧増えます。
つまり、あなたが水中に潜ると、 $10\:m$ で感じる圧力は、大気圧の 1気圧とあわせて2気圧感じることになります。

これは、 $1\:cm^2$ あたり約 $2\:㎏$ の重りをのせているのと同じです。

コメント